LocalAI supports running OpenAI functions and tools API with llama.cpp compatible models.

localai-functions-1

To learn more about OpenAI functions, see also the OpenAI API blog post.

LocalAI is also supporting JSON mode out of the box with llama.cpp-compatible models.

šŸ’” Check out also LocalAGI for an example on how to use LocalAI functions.

Setup

OpenAI functions are available only with ggml or gguf models compatible with llama.cpp.

You don’t need to do anything specific - just use ggml or gguf models.

Usage example

You can configure a model manually with a YAML config file in the models directory, for example:

  name: gpt-3.5-turbo
parameters:
  # Model file name
  model: ggml-openllama.bin
  top_p: 80
  top_k: 0.9
  temperature: 0.1
  

To use the functions with the OpenAI client in python:

  import openai
# ...
# Send the conversation and available functions to GPT
messages = [{"role": "user", "content": "What's the weather like in Boston?"}]
functions = [
    {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                },
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
        },
    }
]
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=messages,
    functions=functions,
    function_call="auto",
)
# ...
  

Advanced

Use functions without grammars

The functions calls maps automatically to grammars which are currently supported only by llama.cpp, however, it is possible to turn off the use of grammars, and extract tool arguments from the LLM responses, by specifying in the YAML file no_grammar and a regex to map the response from the LLM:

  name: model_name
parameters:
  # Model file name
  model: model/name

function:
  # set to true to not use grammars
  no_grammar: true
  # set one or more regexes used to extract the function tool arguments from the LLM response
  response_regex:
  - "(?P<function>\w+)\s*\((?P<arguments>.*)\)"
  

The response regex have to be a regex with named parameters to allow to scan the function name and the arguments. For instance, consider:

  (?P<function>\w+)\s*\((?P<arguments>.*)\)
  

will catch

  function_name({ "foo": "bar"})
  

Parallel tools calls

This feature is experimental and has to be configured in the YAML of the model by enabling function.parallel_calls:

  name: gpt-3.5-turbo
parameters:
  # Model file name
  model: ggml-openllama.bin
  top_p: 80
  top_k: 0.9
  temperature: 0.1

function:
  # set to true to allow the model to call multiple functions in parallel
  parallel_calls: true
  

Use functions with grammar

It is possible to also specify the full function signature (for debugging, or to use with other clients).

The chat endpoint accepts the grammar_json_functions additional parameter which takes a JSON schema object.

For example, with curl:

  curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
     "model": "gpt-4",
     "messages": [{"role": "user", "content": "How are you?"}],
     "temperature": 0.1,
     "grammar_json_functions": {
        "oneOf": [
            {
                "type": "object",
                "properties": {
                    "function": {"const": "create_event"},
                    "arguments": {
                        "type": "object",
                        "properties": {
                            "title": {"type": "string"},
                            "date": {"type": "string"},
                            "time": {"type": "string"}
                        }
                    }
                }
            },
            {
                "type": "object",
                "properties": {
                    "function": {"const": "search"},
                    "arguments": {
                        "type": "object",
                        "properties": {
                            "query": {"type": "string"}
                        }
                    }
                }
            }
        ]
    }
   }'
  

Grammars and function tools can be used as well in conjunction with vision APIs:

   curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
     "model": "llava", "grammar": "root ::= (\"yes\" | \"no\")",
     "messages": [{"role": "user", "content": [{"type":"text", "text": "Is there some grass in the image?"}, {"type": "image_url", "image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" }}], "temperature": 0.9}]}'
  

šŸ’” Examples

A full e2e example with docker-compose is available here.

Last updated 31 May 2024, 22:52 +0200 . history